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Abstract

Lattice-Boltzmann simulations on ¯uidization of two-dimensional rectangular multi-particles falling
against gravity are performed. The particle behavior is dominated by inertia e�ects associated with
wakes. The long bodies of the rectangular particles turn horizontal dominantly. Relative stable particle
clusters and inverted T clusters are found. Drafting, kissing and melting can be used to characterize the
behavior of multi-rectangular particles. Simulation results are well consistent with the experimental
results of three-dimensional cylindric and disk particles. # 2000 Elsevier Science Ltd. All rights
reserved.

1. Introduction

Fluidization of solid particles is an important subject in a variety of industries. For example,
wood ®bers have to be ¯uidized to have an uniform structure before entering the forming
section of a paper machine. Understanding of essential mechanism of aggregation and
dispersion of particles will bene®t process design of chemical engineering.
Some investigators have reported their works on sedimentation of spherical, and non-

spherical particles. The formation of natural clusters of particles were reported. Evidence of the
importance of aggregates formed from drafting, kissing and tumbling in both low and high
Reynolds number was given by Happel and Pfe�er (1960), Joseph et al. (1987), and Feng et al.
(1994a). Joseph group conducted the ®rst experimental ¯uidization of non-spherical particles.
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Cylinders and disks were used in their experiments. The non-spherical particle behavior is quit
di�erent from spherical particles. They found that long bodies of particles are perpendicular to
the stream lines of ¯ows and oscillate around the horizontal position. The high pressure at the
points of stagnation gives rise to a couple causing the body to turn broadside on. There are
very strong wakes behind ¯uidized cylinders. Other particles may be sucked into the wakes.
Joseph et al. (1987) reported that inverted `T' clusters and other type clusters may be formed
by two or more particles. These clusters formed by multi-particles are relatively stable. Much
more information can be found in the article by Joseph et al. (1987).
Lattice-Boltzmann (LB) simulations on ¯uidization of two-dimensional (2D) rectangular

multi-particles falling against gravity are performed in this work. The purpose is to
demonstrate that the LB method has a capacity to handle non-spherical multi-particles
correctly.

2. Lattice-Boltzmann simulation

The method of LB simulation (Wolfram, 1986; D'Humieres et al., 1986; D'Humieres and
Lallemand, 1987; Frich et al., 1987; McNamara and Zanetti, 1988; Qian et al., 1992; Dahlburg
et al., 1987) of suspensions has been developed to simulate the complex shape particles (Ladd,
1994a, 1994b; Koch and Ladd, 1997; Aidun and Lu, 1995; Aidun and Qi, 1998; Aidun et al.,
1998; Qi, 1997a, 1997b, 1999a, 1999b). The simulation domain is divided into a discrete lattice.
A distribution function of ¯uid density in the lattice node is used to represent the real ¯ows. A
two speed model of LB simulation is used, and the vectors esi representing both lattice spacing
and ¯uid velocities in the model are listed in Table 1 for the 2D case. The LB equation with a
single relaxation time is given by

fsi�x� Eesi,t� E� ÿ fsi�x,t� � ÿ1t
h
fsi�x,t� ÿ f

�0�
si �x,t�

i
, �1�

where fsi�x,t� is the ¯uid particle distribution function, f
�0�
si �x,t� is the equilibrium distribution

function, t is the single relaxation time, and E is the small lattice time unit in physical unit. The
kinematic viscosity n is related to t by n � �2tÿ 1�=6: In the simulations, f

�0�
si �x,t� is taken as

Table 1
Velocity vector for cubic lattice in the two-dimensional case

s i esix esiy esi

1 1 1 0 1
1 2 ÿ1 0 1
1 3 0 1 1

1 4 0 ÿ1 1
2 1 1 1 Z2
2 2 ÿ1 ÿ1 Z2
2 3 ÿ1 1 Z2

2 4 1 ÿ1 Z2
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f �0�si �x,t� � As � Bs�esi � u� � Cs�esi � u�2�Dsu
2, �2�

where s � 1 corresponds to the ¯uid particles moving to the near-neighbors along axial
directions; s � 2 corresponds to the ¯uid particles moving to their second near-neighbors along
diagonal directions; s � 0 and i � 0 correspond to the rest ¯uid particles; u is the mean
velocity of ¯uid particles at a node.
To derive the Navier±Stokes equations, the Chapman±Nskog procedure (Libo�, 1990) is

utilized, and a long-wavelength, low-frequency approximation and a multi-scaling analysis are
adopted (Hou, 1995). Thus,

@

@t
� E

@

@t1
� E2

@

@t2
� � � � �3�

and

@

@x
� E

@

@x
, �4�

where t1 and t2 represent fast and slow time scales, respectively. The distribution function is
also expanded as

fsi � f
�0�
si � Ef �1�si � E2f �2�si , �5�

where the zeroth-order term is the equilibrium distribution function. Since the mass, and
momentum are conserved in collisions at each node:

r�x,t� �
X
si

fsi�x,t� �
X
si

f �0�si , �6�

r�x,t�u �
X
si

fsi�x,t�esi �
X
si

f
�0�
si �x,t�esi, �7�

the summations over non-equilibrium density are zero:
P

si f
�l �
si � 0 and

P
si f
�l �
si esi� 0 for l >

0: Substituting the above expansions into Eq. (1), the equations of ®rst and second order in E
are obtained and written as

@

@t1
f
�0�
si � esi � r1f �0�si � ÿ

1

t
f
�1�
si , �8�

and

@

@t2
f �0�si �

�
@

@t1
� esi � r

��
1ÿ 1

2t

�
f �1�si � ÿ

1

t
f �2�si : �9�

When Eq. (8) is summed over s and i, the mass conservation equation is obtained as

@r
@t
� rru �10�
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The momentum equation is obtained by multiplying Eq. (9) by esi and then summing over all
directions:

@ru

@t
� r �PPP�0� �

�
1ÿ 1

2t

�
PPP�1� � 0, �11�

where PPP�0� and PPP�1� are the momentum ¯ux tensors,

PPP�0� �
X
si

esiesif
�0�
si , �12�

and

PPP�1� �
X
si

esiesif
�1�
si �13�

Constitutive relations for the tensors are obtained by matching moments of the distribution
function with the terms in the Navier±Stokes equations. After manipulating algebra, the
Navier±Stokes equations are recovered, and the suitable coe�cients in the ¯uid density
distribution function are found for two-dimensional

A1 � 1

9
r, B1 � 1

3
r, C1 � 1

2
r,

D1 � ÿ1
6
r, A2 � 1

72
r, B2 � 1

24
r,

C2 � 1

16
r, D2 � ÿ 1

48
r, A0 � 2

9
r,

D0 � ÿ1
6
r �14�

In order to match the ¯uid velocity with the velocity of solid in the solid±¯uid interface, Ladd
proposed a collision rule which is given by

fsi 0 �x,t� 1� � fsi�x,t�� ÿ 2Bs�esi � Ub�, �15�

where x is the position of the node adjacent to the solid-surface with velocity Ub, t� is the post
collision time which is the same as the de®nition by Ladd (1994a), i ' denotes the re¯ected
direction, and i the incident direction. The above rule is applied to the boundary nodes in both
sides of the solid-surface. As a result, a no-slip boundary condition for moving solid particles
is imposed by the collision rule in such a way that the ¯uid mass is conserved at each time step
by allowing exchange of population of ¯uid at the boundary nodes adjacent to both sides of
the solid-surface. The hydrodynamic force exerted on the solid particle at the boundary node is
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F

�
x� 1

2
esi

�
� 2esi

ÿ
fsi�x,t�� ÿ Bs�Ub � esi�

� �16�

where Ub � U0 � OOO� xb; U0 is the velocity of the center of mass; Ub is the velocity of solid±
¯uid interface at the node; OOO is the angular velocity of the solid particle; xb�x� 1

2esiÿR; R is
the center of the corresponding solid particle. The total force FT and torques TT on the solid
particles are obtained by

FT �
X

F

�
x� 1

2
esi

�
�17�

TT �
X�

x� 1

2
esi ÿ R

�
� F

�
x� 1

2
esi

�
�18�

The summation is over all the boundary nodes in the ¯uid region associated with a particular
solid particle.
In the LB method, the nodes are ®xed and the solid particles move over on the (nodes)

grids. Whenever a node crosses the ¯uid±solid interface and enters the solid region, the
momentum of the ¯ow at the boundary node may exert a force on the solid particle. The force
FI (Aidun et al., 1998; Qi, 1999a) at the node is

FI�x,t� � r�x,t�u�x,t� �19�
where r is the density of the ¯uid at the node. Similarly, whenever a node crosses the solid±
¯uid interface and leave the solid region. The ¯ow in the node should add a force FO on the
solid particle, i.e.

FO�x,t� � ÿr�x,t�u�x,t� �20�
It is important that the approach still allows ¯uid to enter the inside of solid to conserve total
mass of ¯uid at each time step. First, conservation of ¯uid mass guarantees the recovery of the
Navier±Stokes equations from LB method. Otherwise, the Navier±Stokes equations would not
be recovered.
Both the translations and rotations of each particle are updated at each Newtonian dynamic

time step by using a so-called `velocity-Verlet' scheme (Swope et al., 1982). The scheme is
written as

R�t� dt� � R�t� � dtU0�t� � 1

2
dt2F�t�=M �21�

U0�t� dt� � U0�t� � 1

2
dtF�t�=M� F�t� dt�=M �22�

where R is the position of the mass center of a solid particle, F is the total force on the solid
particle, M is the mass of the solid particle.
The reliability of the LB simulation of suspensions at ®nite Reynolds numbers has been
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evaluated and con®rmed by comparing LB simulation results with both ®nite-element and
experimental results (Qi, 1999).

3. Fluidization of rectangular particles

Two-dimensional rectangular particles may have a similar behavior to three-dimensional
(3D) disk or cylindric particles. Before simulating them in a 3D space, as ®rst step, conducting
a simulation in a 2D space is a cheaper way to gain an insight into a physical picture of multi-
particle interaction.

Fig. 1. Snap shots of rectangular particles at t � 0, 2600, 18,200, 25,600, 35,000, 40,000. The inverted T formed by
two particles, stable doublets, triplets, and large clusters formed by an array of a few rectangles ¯oating broadside
on are shown.
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4. Simulation

Two rectangular particles have been simulated by Qi (1999a). The same method is extended
to deal with multi-rectangular particles. The length l of rectangular particle is 30 and the width
w � 10: Forty such rectangular particles are initially located in a regular order in a 2D channel
and the titling angles of the long axis of all the rectangles with the horizontal direction are set
to 1358 as shown in Fig. 1. The density ratio of the solid particles to ¯uid is 2. They settle
down under gravity. The ¯uid velocity at the bottom boundary is set to zero and the boundary
is always 325 away from the bottom particle. The gradient of the ¯uid velocity in the vertical
direction at the top boundary is set to zero and the boundary is always kept 325 distance from
the top particle. Therefore, the simulation box is expanded in the gravity direction during
simulation due to relative movement among the particles and the boundary conditions used in
this work. The initial simulation box size is 261 � 1000 and the size at t � 50,000 is
261 � 1963.

4.1. Angular ordering

The snapshots of particle con®gurations at di�erent time in the simulations are shown in

Fig. 2. Rotational angles.
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Fig. 1. The diagrams from the left to the right and from the top to the bottom in the ®gure
correspond to a time order of t � 0, 2600, 18,200, 25,600, 30,000 and 40,000. The global
averages of tilting angle as a function of time are shown in Fig. 2.
The particles turn horizontal collectively after 2600 time steps, and slowly and collectively

oscillate around 1808 like a `whole body'.The particles start to melt from the `whole body'
around time step t � 18,000: Since the distance of the most left particles from the left wall is

Fig. 3. The angular distribution functions (normalized to 1) are shown for the period from t � 30,000 to 40,000 in
the right ®gure and for that from t � 30,000 to 40,000 in the left.
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larger than that of the most right particles from the right wall, the melting starts at the left low
corner and propagates to adjacent particles. After that, the positions and the tilting angles
become more and more random due to the strong wake interaction among ¯uid and particles.
The initially collective oscillation turns to individual particle oscillation which may have a
di�erent direction for each particle. The rotation of particle no. 7 as a function of time is
plotted in Fig. 2. It oscillates around 1808. The oscillation is directly associated with vortex
shedding which has been analyzed by Huang et al. (1994). After the particles become more
random, the global angle is not meaningful and an angular distribution function (ADF) should
be adopted to statistically describe the particle rotation. The ADF is de®ned as a probability of
®nding a single rectangular particle with a given titling angle y per unit angle and written as

f�y� � 1

n

X
i

hd�y� ÿ d�yi�i �23�

where d is Dirac delta function, h� � �i stands for an ensemble average and n is the total number
of the particles.
The ensemble average of the angles is carried out for 50 con®gurations, each 200 time steps

apart. The results for the periods from t � 20,000 to 30,000 and from t � 30,000 to 40,000 are
shown in Fig. 3. It is clearly observed that the long bodies of the rectangular particles
broadside on are always dominated during settling as shown in Figs. 1 and 3. The probability
is 26% at y � 1808 for the period from t � 20,000 to 30,000, and 14% at y � 1808 and 4% at
y � 08 for the period from t � 30,000 to 40,000 as shown in Fig. 3, indicating the horizontal

Fig. 4. The global velocity in the settling direction as a function of time.
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angle ordering is a feature of slender body in sedimenting ¯ows. The high pressure is produced
in the front side of a particle and a wake is generated on the back. The high pressure at the
stagnation points gives rise to a couple causing the body to turn broadside on. This has been
explained clearly by Joseph et al. (1987) and Huang et al. (1994).

4.2. Structure of clusters

Fig. 4 shows that the global average velocity of all particles in the settling direction is
oscillated around 0.03. The ®nal global particle Reynolds number de®ned by Re � lu=n is

Fig. 5. The velocity ®eld in a part of simulation box at t � 40,000: The image on the right is a magni®ed section of
the rectangle on the left diagram.
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about 18.0 in this simulation. A complex velocity ®eld in a part of the simulation box at t �
40,000 is shown in Fig. 5. As expected, there are many vortex wakes behind rectangular
particles or clusters.
One particle may be sucked into the wake of the other particles. A variety type of clusters

are observed. The inverted T formed by two particles, stable doublets, triplets are shown in the
circles of Fig. 1. The large clusters formed by an array of a few rectangles ¯oating broadside
on are shown within the large rectangle in Figs. 1 and 6. Drafting, kissing, and tumbling are
originally used to characterize nonlinear interaction between two particles. The mechanisms
may be still applicable to multi-particle interaction. One particle or a cluster may draft and kiss
to other particle or cluster as shown in Fig. 6 due to strong wake e�ects and become a large
cluster, which is relatively stable for a while. After the cluster sucks the other particle or other
cluster, the strength of the wake reduces and some particles in the cluster may be melted. The
three particle con®gurations from the left to the right correspond to a time order of t � 40,000,
42,000 and 45,000 in Fig. 6, and the walls are not shown here. Three large rectangles at the top
of the graph show that two particles are drafting and kissing to a cluster of four particles and
become a larger cluster of six particles, then it is melted and divided into two clusters. The

Fig. 6. Drafting, kissing and melting of particle or clusters. The particle con®gurations from the left to the right
correspond to t � 35,000, 42,000 and 45,000.

D. Qi / International Journal of Multiphase Flow 26 (2000) 421±433 431



particles in three large rectangles at the bottom of the same ®gure are drafting, kissing and
melting.
Therefore, drafting, kissing and melting may be used to characterize the behavior of

aggregation and dispersion due to multi-particle interaction governed by inertia-wake e�ects.
These simulation results are well consistent with the experimental work of Joseph et al. (1987)
who found the similar behavior of non-spherical particles.
An extension of this simulation to 3D cylinders has been conducted. The results will be

reported in another article by Qi (1999). It is shown that the LB method can handle the non-
spherical particles correctly. The simulations can provide all dynamical information, such as
positions and velocities of solid particles and the velocity ®eld of the ¯uid. Therefore, micro-
structure of particles can be analyzed from the information easily. It is expected that
fundamental understanding for aggregation and dispersion of non-spherical particles will be
extracted. Today, simulations of non-spherical particles are not a dream any more. This is just
a beginning, more exciting works are waiting for us.

5. Conclusions

Fluidization with 40 rectangular particles falling under gravity has been simulated by using
the lattice-Boltzmann method. The simulation results show that long bodies of particles turn
horizontal dominantly during falling. The inverted T cluster is formed by two rectangles due to
the strong wake behind a particle. A variety of clusters, such as doublets, triplets and large
clusters formed by an array of a few rectangles, ¯oating broadside on are also found. These
behaviors dominated by the e�ects of inertia are well consistent with the experimental work of
Joseph.
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